J.K. SHAH CLASSES

MATHEMATICS & STATISTICS

FYJC FINAL EXAM - 04 DURATION - 2 1/2 HR

01. find the range of the given function : $f(x) = 9 - 2x^2$; $-5 \le x \le 3$

Q - 1

- Range of f(x) : [-41,9]
- 02. Lim $\frac{\cos x \cos^2 x}{x^2}$
 - $= \lim_{x \to 0} \frac{\cos x (1 \cos x)}{x^2}$
 - = Lim $\cos x 2\sin^2(x/2)$ $x \rightarrow 0 \qquad x^2$
 - $= \lim_{x \to 0} 2 \cos x \left(\frac{\sin(x/2)}{x} \right)^2$
 - $= \lim_{x \to 0} 2 \cos x \left(\frac{1}{2} \frac{\sin(x/2)}{(x/2)}\right)^2$ $= 2 \cos 0 \left(\frac{1}{2} \frac{1}{2}\right)^2$
 - = 1/2

03. find centre and the radius of the circle $3x^2 + 3y^2 - 18x + 6y + 7 = 0$

$$3x^{2} + 3y^{2} - 18x + 6y + 7 = 0$$

$$x^{2} + y^{2} - 6x + 2y + \frac{7}{3} = 0$$
On comparing with
$$x^{2} + y^{2} + 2gx + 2fy + c = 0$$

$$2g = -6 , 2f = 2 , c = 7/3$$

$$g = -3 \quad f = 1$$

$$C = (-g, -f) = (3, -1)$$

$$R = \sqrt{g^{2} + f^{2} - c} = \sqrt{9 + 1 - \frac{7}{3}} = \sqrt{\frac{23}{3}}$$

04.
$$\lim_{x \to 1/4} \frac{4x - 1}{2\sqrt{x - 1}}$$

= $\lim_{x \to 1/4} \frac{4x - 1}{2\sqrt{x - 1}} \frac{2\sqrt{x + 1}}{2\sqrt{x + 1}}$
= $\lim_{x \to 1/4} \frac{4x - 1}{4x - 1} \frac{2\sqrt{x + 1}}{1}$
= $\lim_{x \to 1/4} 2\sqrt{x + 1}$
= $\lim_{x \to 1/4} 2\sqrt{x + 1}$

1 + 1 = 2

=

05.

Find the length of latus rectum and equation of directrices of the ellipse $3x^2 + 4y^2 = 1$

$$\frac{x^2}{1/3} + \frac{y^2}{1/4} = 1$$

$$a^2 = \frac{1}{3} \therefore a = \frac{1}{\sqrt{3}}$$

$$b^2 = \frac{1}{4} \therefore b = \frac{1}{2} \quad a > b$$
Eccentricity
$$b^2 = a^2(1 - e^2)$$

$$\frac{1}{4} = \frac{1}{(1 - e^2)}$$

$$\frac{3}{4} = 1 - e^2$$

$$e^2 = \frac{1}{-\frac{3}{4}}$$

$$e^2 = \frac{1}{-\frac{3}{4}}$$

$$e = \frac{1}{2}$$

$$\frac{a}{e} = \frac{1}{\sqrt{3}} = \frac{2}{\sqrt{3}}$$

$$\checkmark eq. of directrices : x = \pm \frac{a}{e}$$

$$x = \pm \frac{2}{\sqrt{3}}$$

✓ length of latus rectum =
$$\frac{2b^2}{a} = \frac{2(1/4)}{1/\sqrt{3}}$$

= $\frac{1/2}{1/\sqrt{3}}$
= $\sqrt[4]{3}/2$

06.

Find equation of ellipse referred to its principal axes , foci (± 4,0) and eccentricity = 1/3

Let the equation of the ellipse be

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

foci = $(\pm ae, 0) = (\pm 4, 0)$

∴ ae = 4 (1)

$$e = \frac{1}{3} \dots given$$
subs in (1): $a \cdot \frac{1}{3} = 4$ $\therefore a = 12$
Now : $b^2 = a^2(1 - e^2)$
 $b^2 = 144 \left(1 - \frac{1}{9}\right)$
 $b^2 = 144 x \frac{8}{9} = 128$
Hence,
equation of the ellipse: $\frac{x^2}{144} + \frac{y^2}{128} = 1$
07. find $\frac{dy}{dx}$ if $y = x^5 \cdot 5^x$
Differentiating wrt x :
 $\frac{dy}{dx} = x^5 \frac{d}{dx} 5^x + 5^x \cdot \frac{d}{dx} x^5$
 $= x^5 \cdot 5^x \cdot \log 5 + 5^x \cdot (5x^4)$
 $= 5^x \cdot (x^5 \cdot \log 5 + 5x^4)$
 $= x^4 \cdot 5^x \cdot (x \log 5 + 5)$
08. $\cot^{-1}(3) + \cot^{-1}\left(\frac{3}{4}\right) = \cot^{-1}\left(\frac{1}{3}\right)$
 $= \tan^{-1}\left(\frac{1}{3} + \frac{4}{3}\right)$
 $= \tan^{-1}\left(\frac{1}{3} + \frac{4}{3}\right)$
 $= \tan^{-1}\left(\frac{3 + 12}{9}\right)$

$$= \tan^{-1} \left(\frac{15}{5} \right)$$
$$= \cot^{-1} \left(\frac{1}{3} \right)$$

Q2. (A)

Q - 2A

- 01. Prove : tan 100 – tan 65 – tan 35 = tan 100 . tan 65 . tan 35
- $\tan 100 = \tan (65+35)$
- tan 100 = tan65 + tan35 1 – tan65.tan35
- tan100 tan100.tan65.tan35 = tan65 + tan35

tan100 - tan65 - tan35 = tan100.tan65.tan35 proved

02.
$$\tan^{-1} \boxed{\frac{1-x}{1+x}} = \frac{1}{2} \cos^{-1}x$$

LHS

 $= \tan^{-1} \sqrt{\frac{1-x}{1+x}}$

Put $x = \cos \theta$

$$= \tan^{-1} \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}}$$

$$= \tan^{-1} \sqrt{\frac{2\sin^2 \theta/2}{2\cos^2 \theta/2}}$$

$$= \tan^{-1} \sqrt{\frac{\sin^{-\theta}/2}{\cos^{-\theta}/2}}$$
$$= \tan^{-1} \tan^{-\theta}/2$$

$$= \theta/2$$

 $\frac{1}{2}$ cos⁻¹x =

03. Prove : cos 3A - 2.cos 5A + cos 7A $\cos A - 2.\cos 3A + \cos 5A$ = cos 2A - sin 2A . tan 3A

LHS

$$= \frac{\cos 7A + \cos 3A - 2.\cos 5A}{\cos 5A + \cos A - 2.\cos 3A}$$

$$= \frac{2\cos\left(\frac{7A+3A}{2}\right)\cdot\cos\left(\frac{7A-3A}{2}\right)}{2\cos\left(\frac{5A+A}{2}\right)\cdot\cos\left(\frac{5A-A}{2}\right)} - 2\cdot\cos 5A$$

$$= \frac{2\cos 5A \cdot (\cos 2A - 1)}{2\cos 3A \cdot (\cos 2A - 1)}$$

$$= \frac{\cos 5A}{\cos 3A}$$

$$= \frac{\cos (3A + 2A)}{\cos 3A}$$
$$= \frac{\cos 3A \cdot \cos 2A}{\cos 3A} - \frac{\sin 3A \cdot \sin 2A}{\cos 3A}$$

= cos 2A - sin 2A . tan 3A

cos 3A

Q - 2B

Q2. (B)

01.

find circle concentric with $x^2 + y^2 - 6x + 60 = 0$ and having circumference 4π

STEP 1

 $x^2 + y^2 - 6x + 60 = 0$

On comparing with

 $x^2 + y^2 + 2gx + 2fy + c = 0$

2g = -6 , 2f = 0

$$C \equiv (-g, -f) \equiv (3, 0)$$

STEP 2

Circumference = 4π $2\pi r = 4\pi$ r = 2

STEP 3

C(3,0) , r = 2 $(x - h)^{2} + (y - k)^{2} = r^{2}$ $(x - 3)^{2} + (y - 0)^{2} = 2^{2}$ $x^{2} - 6x + 9 + y^{2} = 4$ $x^{2} + y^{2} - 6x + 5 = 0$

02.

find focal distance of point P on the parabola $5y^2 = 12x$ if the abscissa of P is equal to 7 $5y^2 = 12x$ $y^2 = \frac{12x}{5}$ $4\alpha = \frac{12}{5}$

 $a = \frac{3}{5}$

P(7,y) lies on the parabola

Focal distance of P

= PM Focus directrix property

$$= x + a$$

 $= 7 + \frac{3}{5}$
 $= \frac{38}{5}$

03. find the equation of the ellipse referred to its principal axis given that $e = \sqrt[3]{2}$ and passing through (6,-4)

Let the equation of the ellipse be $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $e = \frac{\sqrt{3}}{2}$ Now ; b² = a²(1 - e²) b² = a²(1 - \frac{3}{4}) $b² = \frac{a^2}{4}$ $a² = 4b² \dots (1)$

Since ellipse is passing through (6,-4), it must satisfy the equation of the ellipse

$$\frac{36}{a^2} + \frac{16}{b^2} = 1 \dots \dots (2)$$

Solving (1) & (2)

$$\frac{36}{4b^2} + \frac{16}{b^2} = 1$$
$$\frac{9}{b^2} + \frac{16}{b^2} = 1$$
$$b^2 = 25$$

subs in (1) $a^2 = 4(25) = 100$

Hence, equation of the ellipse : $\frac{x^2}{100} + \frac{y^2}{25} = 1$

Q - 3A

01. $f(x) = x^2 + 3x + 1$, g(x) = x - 2. Find fog⁻¹

STEP 1

g(x) = x - 2 y = x - 2 x = y + 2 $g^{-1}(x) = x + 2$

STEP 2

$$f(x) = x^{2} + 3x + 1$$

fog-1
= $f(g^{-1}(x))$
= $g^{-1}(x)^{2} + 3g^{-1}(x) + 1$
= $(x+2)^{2} + 3(x+2) + 1$
= $x^{2} + 4x + 4 + 3x + 6 + 1$
= $x^{2} + 7x + 11$

02.

Solve the following equations using Cramer's Rule 2x - y + 3z = 9, x + y + z = 6, x - y + z = 2

$$D = \begin{vmatrix} 2 & -1 & 3 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix} = 4 + 0 - 6$$

$$Dx = \begin{vmatrix} 9 & -1 & 3 \\ 6 & 1 & 1 \\ 2 & -1 & 1 \end{vmatrix} = -2$$

$$Dy = \begin{vmatrix} 2 & 9 & 3 \\ 1 & 6 & 1 \\ 1 & 2 & 1 \end{vmatrix} = 2(6-2)-9(1-1)+3(2-6)$$

$$= 8 - 0 - 12$$

$$Dy = \begin{vmatrix} 2 & -1 & 9 \\ 1 & 2 & 1 \end{vmatrix} = -4$$

$$D = \begin{vmatrix} 2 & -1 & 9 \\ 1 & 1 & 6 \\ 1 & -1 & 2 \end{vmatrix} = 2(2+6)+1(2-6)+9(-1-1)$$

$$= 16 - 4 - 18$$

$$x = \frac{Dx}{D} = 1 \quad ; \quad y = \frac{Dy}{D} = 2 \quad ; \quad z = \frac{Dz}{D} = 3$$

$$SS \{1, 2, 3\}$$

03.

Find equation of hyperbola whose foci are $(0,\pm 12)$ and the length of latus rectum is 36

Let the equation of the hyperbola be $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$
foci = (0,±be) = (0,±12)
be = 12 (1)
length of latus rectum $\frac{2a^2}{b} = 36$
$a^2 = 18b \dots (2)$
Now $a^2 = b^2(e^2 - 1)$
$18b = b^2 \left(\left(\frac{12}{b} \right)^2 - 1 \right)$
$18b = b^2 \left(\frac{144 - b^2}{b^2} \right)$
$18b = 144 - b^2$
$b^2 + 18b - 144 = 0$
(b + 24)(b - 6) = 0
b ≠ 24, b = 6
subs in (2)
$a^2 = 18(6) = 108$

:. the equation of the hyperbola be $\frac{y^2}{36} - \frac{x^2}{108} = 1$

Q - 3B

Q3 (B)

01. Lim log (4+x) – log(4-x) $x \rightarrow 0$ sin x Dividing Numerator & Denominator by x, as $x \rightarrow 0$, $x \neq 0$ $\lim_{x \to 0} \frac{\log (4 + x) - \log (4 - x)}{\frac{x}{x}}$ = $\begin{array}{c} \text{Lim} \\ x \to 0 \end{array} \quad \frac{\log (4 + x) - \log (4 - x)}{x} \end{array}$ = = $\lim_{x \to 0} \frac{1}{x} \log \left(\frac{4 + x}{4 - x} \right)$ = $\lim_{x \to 0} \frac{\log \left(\frac{4 + x}{4 - x}\right)}{x}$ $= \lim_{x \to 0} \frac{\log \left(\frac{4 + x}{4}\right)}{\left(\frac{4 - x}{4}\right)}$ = $\lim_{x \to 0} \log \left(\frac{1 + \underline{x}}{\frac{4}{1 - \underline{x}}} \right)$ = $\lim_{x \to 0} \frac{\log \left(1 + \frac{x}{4}\right) - \log \left(1 - \frac{x}{4}\right)}{x}$ $= \lim_{x \to 0} \frac{\log \left(1 + \frac{x}{4}\right)}{\frac{x}{4}} - \frac{\log \left(1 - \frac{x}{4}\right)}{\frac{x}{4}}$ $= \lim_{\mathbf{x} \to \mathbf{0}} \frac{1}{4} \xrightarrow{\log \left(1 + \frac{x}{4}\right)} \frac{1}{4} \xrightarrow{\log \left(1 - \frac{x}{4}\right)} \frac{1}{4}$ $= \frac{1}{4} (1) + \frac{1}{4} (1) = 1$

02. the total cost of x pencils is given by $c = 15 + 28x - x^2$. Find x when marginal cost is 20. Find the average cost at this value of x

SOLUTION :

Marginal cost	=	20
dC dx	=	20
28 – 2x	=	20
8	=	2x
x	=	4
Average cost at	× =	= 1

$$= \frac{C}{x}$$

$$= \frac{15 + 28x - x^{2}}{x}$$

$$= \frac{15 + 28 - x}{x}$$
Put x = 4
$$= \frac{15 + 28 - 4}{4}$$

$$= \frac{15 + 28 - 4}{4}$$

$$= \frac{15 + 24}{4}$$

$$= \frac{15 + 96}{4}$$

$$= \frac{111}{4}$$

03. $y = \sin^3 3x. e^{\sqrt{x}} + \log \frac{x+1}{\sqrt{x^2+1}}$

$$\frac{\text{STEP 1}}{\frac{d}{dx}} = \sin^3 3x. e^{\sqrt{x}}$$

$$= \sin^3 3x. \frac{d}{dx} e^{\sqrt{x}} + e^{\sqrt{x}} \frac{d}{dx} \sin^3 3x$$

$$= \sin^3 3x. e^{\sqrt{x}} \frac{d}{dx} \sqrt{x} + e^{\sqrt{x}} 3 \sin^2 3x \frac{d}{dx} \sin 3x$$

$$= \sin^3 3x. e^{\sqrt{x}} \frac{1}{2\sqrt{x}} + e^{\sqrt{x}} 3 \sin^2 3x . \cos 3x \frac{d}{dx} 3x$$

$$= \sin^3 3x. e^{\sqrt{x}} \frac{1}{2\sqrt{x}} + e^{\sqrt{x}} 3 \sin^2 3x . \cos 3x \frac{d}{dx} 3x$$

$$= \sin^3 3x. e^{\sqrt{x}} \frac{1}{2\sqrt{x}} + e^{\sqrt{x}} 3 \sin^2 3x . \cos 3x 3$$

$$= \frac{e^{\sqrt{x}} . \sin^3 3x}{2\sqrt{x}} + 9 e^{\sqrt{x}} \sin^2 3x . \cos 3x$$

$$= e^{\sqrt{x}} . \sin^2 3x \left(\frac{\sin 3x}{2\sqrt{x}} + 9 . \cos 3x\right)$$

STEP 2 :

$$\frac{d}{dx} \log \frac{x+1}{\sqrt{x^2+1}}$$

$$= \frac{d}{dx} \left(\log (x+1) - \log \sqrt{x^2+1} \right)$$

$$= \frac{d}{dx} \left(\log (x+1) - \frac{1}{2} \log (x^2+1) \right)$$

$$= \frac{1}{x+1} \frac{d}{dx} (x+1) - \frac{1}{2} \frac{1}{x^2+1} \frac{d}{dx} (x^2+1)$$

$$= \frac{1}{x+1} - \frac{1}{2} \frac{1}{x^2+1} 2x$$

$$= \frac{1}{x+1} - \frac{x}{x^2+1}$$

$$\frac{\text{STEP 3}:}{\frac{dy}{dx}} = e^{\sqrt{x}} \cdot \sin^2 3x \left(\frac{\sin 3x}{2\sqrt{x}} + 9\cos 3x \right) + \frac{1}{x+1} - \frac{x}{x^2+1}$$

SECTION - II

01. in a sociological study of 500 persons ,
300 wives married . 250 were successful executives , 198 successful executives were married . Is the data consistent

 $A \equiv married \quad B \equiv successful$

В

TOTAL

A	(AB) = 198	(Aβ) = 102	(A) = 300
α	$(\alpha B) = 52$	$(\alpha\beta) = 148$	(α) = 200
	(B) = 250	(β) = 250	N = 500

β

the data is CONSISTENT

02.

if Σ poqo = 120 , Σ poq1 = 200 , Σ p1q1 = 300 and Po1(L) = 150 . Find Po1(M-E)

$$P_{01}(L) = \frac{\sum p_1 q_0}{\sum p_0 q_0} \times 100$$

 $150 = \frac{\sum p_1 q_0}{120} \times 100$

$$\frac{\sum p_1 q_0}{100} = \frac{150 \times 120}{100} = 180$$

- $P_{01}(ME) = \frac{\sum p_{1}q_{0} + \sum p_{1}q_{1}}{\sum p_{0}q_{0} + \sum p_{0}q_{1}} \times 100$
 - $= \frac{180 + 300}{120 + 200} \times 100$
 - $= \frac{480}{320} \times 100 = 150$

03.

let A and B be two events such that P(A) = 0.3. $P(A \cup B) = 0.8$. If A and B are independent events, then find P(B) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $P(A \cup B) = P(A) + P(B) - P(A) \cdot P(B)$ A & B are independent 0.8 = 0.3 + P(B) - 0.3P(B)0.5 = 0.7P(B)

$$P(B) = \frac{5}{7}$$

04.
$${}^{12}C_5 + 2.{}^{12}C_4 + {}^{12}C_3 = {}^{14}C_x$$

 $({}^{12}C_5 + {}^{12}C_4) + ({}^{12}C_4 + {}^{12}C_3) = {}^{14}C_x$
 ${}^{13}C_5 + {}^{13}C_4 = {}^{14}C_x$
 ${}^{14}C_5 = {}^{14}C_x$
 ${}^{14}C_5 = {}^{14}C_9 = {}^{14}C_x$
 $x = 5 \text{ or } 9$

05.

the index number for the year 2004 taking 2002 as base year was found to be 120 . Find the missing details if $\Sigma p_0 = 320$

Commodity	А	В	С	D	Е	F
P _o (2002)	40	60	20	х	50	110
p ₁ (2004)	50	70	30	85	У	115

$$\sum_{n=1}^{\infty} p_0 = 320 \quad ,$$

$$280 + x = 320 \qquad \therefore x = 40$$

$$P_{01} = \frac{\sum_{n=1}^{\infty} x \, 100}{\sum_{n=0}^{\infty} x \, 100}$$

$$120 = \frac{350 + y}{320} \times 100$$

$$350 + y = \frac{120 \times 320}{100}$$

$$350 + y = 384 \qquad \therefore y = 34$$

06. for the following data , find the value of x if the Laspeyre's price index number is equal to Paasche's price index number

Commodity	po	, q ₀	p ₁	q
А	3	x	2	5
В	4	6	3	5
b ¹ d ⁰	pldl	p ⁰ d ⁰		p ⁰ d ¹
2x	10	Зx		15
18	15	24		20
2x+18	25	3x+2	4	35
P01(L) =	P01(P)			
$\frac{\sum p_1 q_0}{\sum p_0 q_0} x$	100 =	$\frac{\Sigma p_1 q_1}{\Sigma p_0 q_1}$	х	100
$\frac{2x + 18}{3x + 24} =$	<u>25</u> 35			
7(2x + 18)	= 5(3x	+ 24)	.:.	x = 6

Q4

07. two unbiased dice are rolled . Find the probability that the sum of numbers on the upper most faces is divisible by 2 or 4 NOTE : we have been solving such sums using ADDITION THOREM as done in mock paper 3 in a similar sum . However here I have solved using CLASSICAL DEFINITION

Exp : two unbiased dice are rolled n(S) = 36

- E ≡ sum of numbers on the upper most faces is divisible by 2 or 4
 - = sum of numbers is 2, 4, 6, 8, 10 or 12
 - = (1,1), (1,3), (2,2), (3,1), (1,5), (2,4), (3,3),(4,2), (5,1), (2,6), (3,5), (4,4), (5,3), (6,2),(4,6), (5,5), (6,4), (6,6)

$$n(E) = 18$$

 $P(E) = n(E) = \frac{18}{n(S)} = \frac{18}{36} = \frac{1}{2}$

08.

Compute 3 yearly moving average values								
Year	:	2004	2005	2006	2007	2008	2009	
IMR	:	114	97	80	74	68	58	
Year	:	2010						
IMR	:	49						

Year	IMR	3 year 3 year MOVING TOTAL MOVING AVG T T/3
2004	114	
2005	97	114 + 97 + 80 = 291 291/3 = 97
2006	80	97 + 80 + 74 = 251 251/3 = 83.67
2007	74	80 + 74 + 68 = 222 222/3 = 74
2008	68	74 + 68 + 58 = 200 200/3 = 66.67
2009	58	68 + 58 + 49 = 175 175/3 = 58.33
2010	49	

Q5(A)

01.

(AB) = 128 ;(α B) = 384 ;(A β)=24 ;($\alpha\beta$) = 72 . Examine whether attributes A and B are independent or not

Q - 5A

1) (AB) $(\alpha\beta) = 128 \times 72 = 9216$

- 2) $(A\beta)(\alpha B) = 24 \times 384 = 9216$
- 3) (AB) $(\alpha\beta) = (A\beta)(\alpha B)$
- 4) attributes A and B are independent

02.

Two students appear for an examination , their chances of passing the examination being 0.7 and 0.8 respectively . Find the probability that only one of them passes the examination

A = student A passes the exam , P(A)=0.7

- $B \equiv$ student A passes the exam , P(B)=0.8
- E = only one of them passes the examination

$$\mathsf{E} = (\mathsf{A} \cup \mathsf{B}) - (\mathsf{A} \cap \mathsf{B})$$

$$P(E) = P(A \cup B) - P(A \cap B)$$

$$= P(A) + P(B) - P(A \cap B) - P(A \cap B)$$

- $= P(A) + P(B) 2P(A \cap B)$
- = P(A) + P(B) 2P(A)P(B)

..... A & B are independent

= 0.7 + 0.8 - 2(0.7)(0.8)= 1.5 - 1.12= 0.38

Year	1971 1972 1973 1974	4 1975 1976	1977 1978 1979	1980
Production	12 15 18 17	16 20	23 22 24	25
Year IMR	4 Year Moving total	4 year moving total Centered (T)	4 year moving avg Centered (T/8)	
1971 12				
1972 15	12+15+18+17 = 62			
1973 18		62 + 66 = 128	128/8 = 16	
1974 17	15+18+17+16 = 66	66 + 71 = 137	137/8 = 17.125	
1975 16	17+16+20+23 = 76	71 + 76 = 147	147/8 = 18.375	
1976 20		76 + 81 = 157	157/8 = 19.625	
1977 23	16+20+23+22 = 81 20+23+22+24 = 89	81 + 89 = 170	170/8 = 21.25	
1978 22		89 + 94 = 183	183/8 = 22.875	
1979 24	23+22+24+25 = 94			
1980 25				

03. Obtain the trend component of the following time series of production using 4 – yearly moving average

Q5.(B)

Q - 5B

01. Calculate Walsch's Price Index Number

р _о	q _o	P ₁	q ₁	√q ₀ q ₁	p1. \q_0q1	po ∕a0a1
10	12	40	3	6	240	60
20	2	25	8	4	100	80
30	3	50	27	9	450	270
60	9	90	36	18	1620	1080
					2410	1490

P01(W)	=	² p ₁ . <u>qoq</u> 1	x 100	=	2410 x 100	LOG CALC
		$\Sigma p_0 \sqrt{q_0 q_1}$			1490	3.3820
						-3.1732
				=	161.7	AL(0.2088)
						1.617

02. How many 5 digit numbers can be formed using digits 0,1,2,3,4,5 which are divisible by 3 without repeating the digits

> (NOTE : divisibility test for 3 is sum of digits have to be multiple of 3) Case1 : 5 digit numbers formed using digits 0, 1, 2, 4, 5 Ten thousand place can be filled by any of the 4 digits (excluding 0) in ${}^{4}P_{1}$ ways Remaining 4 places can be filled by the remaining 4 digits in $^{4}P_{4} = 4!$ ways By fundamental principle of multiplication, nos. formed = ${}^{4}P_{1} \times 4! = 96$

Case2 : 5 digit numbers formed using digits 1, 2, 3, 4, 5 5 places can be filled by the 5 digits in ${}^{5}P_{5} = 5$!ways By fundamental principle of multiplication, nos. formed = 5! = 120

Therefore ; By fundamental principle of ADDITION ,

Total numbers = 96 + 120 = 216

03.

	Fever	No Fever	Total
Quinine	20	792	812
No Quinine	220	2216	2436
Discover the	usefulness	of quinine	in checking
malaria			

NOTE: We will find yules coefficient of association between Quinine and no Fever to examine its effectiveness in preventing Fever and hence

A : person is administered with 'QUININE'

B : person is suffereing from 'NO FEVER

		No Fever B	Fever ß
Quinine	А	(AB) = 792	$(A\beta) = 20$
No Quiniine	α	(aB)=2216	(αβ)= 220

Q	=	$(AB)(\alpha\beta) - (A\beta)(\alpha B)$
		$(AB)(\alpha\beta) + (A\beta)(\alpha B)$
	=	$792 \times 220 = 20 \times 2216$
		792x220 + 20 x 2216
	=	174240 - 44320
		174240 + 44320
	=	129920 LOC

129920	LOG CALC.
218560	4. 1137
	- 4. 3397
<u>12992</u> 21856	 AL 1. 7740 0. 5943

= 0.5943

= 129

COMMENT

There is significant amount of positive assocciation between A and B and hence Quinine is effective in preventing Fever

Q - 6A

Q6. (A)

01.

Compute the standard deviation for the following data

02. In how many ways can a committee of 3 ladies and 4 gents be chosen from 8 ladies and 7 gents . What is the number of ways if Miss X refuses if Mr Y is a member .

Case 1 : Mr Y is a member

Since Mr Y is a member , the remaining 3 gents have to be selected from the remaining 6 gents . This can be done in ${}^{6}C_{3}$ ways

Since Mr Y is a member , Miss X will not the member . Therefore the 3 ladies have to be selected from the remaining 7 ladies . This can be done in $^{7}C_{3}$ ways

By fundamental principle of Multiplication

No of ways of forming such a committee = ${}^{6}C_{3} \times {}^{7}C_{3}$ = 20 x 35 = 700

Case 2 : Mr Y is NOT a member

Since Mr Y is not a member , the 4 gents have to be selected from the remaining 6 gents . This can be done in ${}^{6}C_{4}$ ways

Having done that ,

the 3 ladies have to be selected from the remaining 8 ladies . This can be done in $^8\text{C}_3~$ ways

By fundamental principle of Multiplication

No of ways of forming such a committee = ${}^{6}C_{4} \times {}^{8}C_{3} = {}^{6}C_{2} \times {}^{8}C_{3}$ = 15 x 56 = 840

By fundamental principle of addition

Total ways of forming the committee = 700 + 840 = 1540

03. If there are 12 points in a plane out of which 'p' points are collinear , find the value of 'p' for which 185 triangles can be obtained by joining these 12 points

12 points

3 points define a triangle

:.number of Δ 's that can be drawn = ${}^{12}C_3$

= 220

But p points are collinear

Number of triangles wrongly counted in these

 $p \text{ collinear points} = pC_3 \text{ instead of 0}$

Hence

actual triangles that can be drawn

$$220 - {}^{p}C_{3} = 185 \dots \text{ given}$$

$${}^{p}C_{3} = 35$$

$$\underline{p(p-1)(p-2)}_{3.2.1} = 35$$

$$p(p-1)(p-2) = 210$$

$$p(p-1)(p-2) = 7.6.5$$

 \therefore On Comparison n = 7

Q6. (B)

Q - 6B

01. there are two urns A and B. A contains 3 white & 5 red balls. B contains 2 white & 4 red balls. One urn is selected at random & a ball is drawn from it at random. Find the probability that the ball drawn is white

exp : One urn is selected at random & a ball is drawn from it at random

E = ball drawn is white

 \equiv E1 \cup E2

2

8

E1 = urn A is selected AND a white ball is drawn E1 = $A \cap B$ P(E1) = P($A \cap B$) = P(A) x P($B \mid A$) = 1 x 3 = 3

16

E2 = urn B is selected AND a white ball is drawn
E2 = A
$$\cap$$
 B
P(E2) = P(A \cap B)
= P(A) x P(B | A)
= $\frac{1}{2}$ x $\frac{2}{6}$ = $\frac{1}{6}$
E = E1 \cup E2
P(E) = P(E1 \cup E2)
P(E) = P(E1) + P(E2) Mutually Exclusive
= $\frac{3}{16}$ + $\frac{1}{6}$
= $\frac{9+8}{48}$
= $\frac{17}{48}$

02.

fit a trend line using method of least squares . Also obtain trend value for the year 2006 Year :2000 2001 2002 2003 2004 2005 Sales: 105 118 125 130 150 172

t y		$v = (1-2002.5) \times 2$	U ²	γu		
2000	105	-5	25	-525		
2001	118	-3	9	-354		
2002	125	-1	1	-125		
2003	130	1	1	130		
2004	150	3	9	450		
2005	172	5	25	860		
	800	0	70	-1004+1440		
				436		

trend line :								
У	=	a + bu	уu	=	au+	bu ²		
Σy	=	na + bΣu	Σγυ	=	αΣυ	+ bΣu ²		
80	0=	6a	436	=		b(70)		
а	=	133.33	b	=	6.23			
у	=	133.33 + 6.23u;	U =	(†	- 200	2.5)x2		
trend value for the year 2006								
U	=	(2006–2002.5)x2	= 7					
у	=	133.33 + 6.23(7)	= 1	76.9	74			

03. Find the cost of Living Index number

Group	P0	рı	w	$I = \frac{p_1}{P_0} \times 100 \qquad Iw$
Food	12	60	25	$\frac{60 \times 100}{12} = 500 \qquad 12500$
Clothing	10	45	20	$\frac{45 \times 100}{10} = 450 \qquad 9000$
Fuel & Light	20	35	15	$\frac{35 \times 100}{20} = 175 \qquad 2625$
House Rent	25	20	30	$\frac{20 \times 100}{25} = 80 \qquad 2400$
Misc	16	48	10	$\frac{48 \times 100}{16} = 300 \qquad 3000$
		Σw	= 100	ΣIw = 29525
				$CLI = \frac{\Sigma I w}{\Sigma w} = \frac{29525}{100} = 295.25$

								100		
In 2008	;	CLI	=	295.25	;	Expenditure	=	295.25 x 10000	=	29,525/-
In 2007	;	CLI	=	100	;	Expenditure	=	10,000/-		